Skip to content

Scientific Bibliography: Dams and Reservoirs Emit Greenhouse Gases

As of June 2021, here are the 37 most significant scientific studies that have analyzed the GHG emissions caused by the construction and operation of dams and reservoirs. (This does not include the GHG emissions from deforestation caused by dams/reservoirs which is posted here.)

A white paper, “The Myth of Clean Hydro: Dams and Reservoirs Emit Greenhouse Gases and Make Climate Change Worse“, discusses all of these scientific studies in narrative form on our website (link).


Bertassoli, D. J., Sawakuchi, H. O., de Araújo, K. R., de Camargo, M. G. P., Alem, V. A. T., Pereira, T. S., Krusche, A. V., Bastviken, D., Richey, J. E., & Sawakuchi, A. O. (2021). How Green can Amazon Hydropower be? Net Carbon Emission from the Largest Hydropower Plant in Amazonia. Science Advances, 7(26).

Harrison, John, Yves T. Prairie, Sara Mercier‐Blais, Cynthia Soued. (2021) Year‐2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas from Reservoirs (G‐res) Model. Global Biogeochemical Cycles, doi: 10.1029/2020GB006888

Jane, S.F., Hansen, G.J.A., Kraemer, B.M. et al. (2021) Widespread Deoxygenation of Temperate Lakes. Nature 594, 66–70.

Keller, P.S., Marcé, R., Obrador, B. et al. (2021) Global Carbon Budget of Reservoirs is Overturned by the Quantification of Drawdown Areas. Nat. Geosci. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas


Beaulieu, J, et al.; (2020) Methane and Carbon Dioxide Emissions From Reservoirs ,  Journal of Geophysical research. Biogeosciences, Vol.125 (12), p.n/a, doi: Methane and carbon dioxide emissions from reservoirs: Controls and Upscaling 

Deemer, Bridget R. et al. (2020), Data from: Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis, Dryad, Dataset,


Almeida, R.M., Shi, Q., Gomes-Selman, J.M. et al. (2019) Reducing Greenhouse Gas Emissions of Amazon Hydropower with Strategic Dam Planning. Nat Commun 10, 4281.

Beaulieu, J.J., DelSontro, T. & Downing, J.A. (2019) Eutrophication will Increase Methane Emissions from Lakes and Impoundments during the 21st Century. Nat Commun 10, 1375.

Hager, PhD, Cecil Green  and Ida Green Professor of Earth Sciences Department of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology

Documentation of the Carbon Footprint of Hydro Québec’s Hydropower

Marcé, R. et al. (2019) Emissions from Dry Inland Waters are a Blind Spot in the Global Carbon Cycle. Earth Sci. Rev. 188, 240–248. 

Ocko, Ilissa B.  and Steven P. Hamburg, (2019) Climate Impacts of Hydropower: Enormous Differences among Facilities and over Time,  Environmental Science & Technology 2019 53 (23), 14070-14082   DOI: 10.1021/acs.est.9b05083


Chow, M.F.; Bakhrojin, M.A.b.; Haris, H.; Dinesh, (2018), A.A.A. Assessment of Greenhouse Gas (GHG) Emission from Hydropower Reservoirs in Malaysia. Proceedings 2018, 2, 1380.

DelSontro, T., J. Beaulieu, AND J. Downing. (2018), Greenhouse Gas Emissions from Lakes and Impoundments: Upscaling in the Face of Global Change. Limnology and Oceanography Letters. John Wiley & Sons, Inc., Hoboken, NJ, 3(3):64-75.

Kosten, S. et al. (2018). Extreme Drought Boosts CO2 and CH4 Emissions from Reservoir Drawdown Areas. Inland Waters 8, 329–340.

Prairie YT, Alm J, Beaulieu J, et al. (2018). Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See?. Ecosystems; 21(5):1058-1071.

Räsänen, Timo A. et al. (2018). Greenhouse Gas Emissions of Hydropower in the Mekong River Basin, Environ. Res. Lett. 13 034030

Samiotis G, Pekridis G, Kaklidis N, Trikoilidou E, Taousanidis N, Amanatidou E. (2018). Greenhouse Gas Emissions from two Hydroelectric Reservoirs in Mediterranean Region. Environ Monit Assess. May 26;190(6):363.  doi: 10.1007/s10661-018-6721-4

Song, C. et al., (2018). Cradle-to-Grave Greenhouse Gas Emissions from Dams in the United States of America, 90 Renewable and Sustainable Energy Reviews 5


Maavara, T., R. Lauerwald, P. Regnier, P.Van Cappellen. (2017) Global Perturbation of Organic Carbon Cycling by River DammingNature Communications, 8: 15347 DOI: 10.1038/ncomms15347


Beaulieu, J.J., McManus, M.G. and Nietch, C.T. (2016), Estimates of Reservoir Methane Emissions based on a Spatially Balanced Probabilistic-survey. Limnol. Oceanogr., 61: S27-S40.

Deemer, Bridget R., John A. Harrison, Siyue Li, Jake J. Beaulieu, Tonya DelSontro, Nathan Barros, José F. Bezerra-Neto, Stephen M. Powers, Marco A. dos Santos, J. Arie Vonk, (2016). Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis, BioScience, Volume 66, Issue 11, 1 November 2016, Pages 949–964, “

Fearnside, P.  (2016) Greenhouse Gas Emissions from Brazil’s Amazonian Hydroelectric Dams,  Environ. Res. Lett. 11 011002. doi: 10.1088/1748-9326/11/1/011002

Scherer, Laura & Stephan Pfister, (2016). Hydropower’s Biogenic Carbon Footprint, PLOS ONE, September 14, 2016.


De Faria, Felipe A M, Jaramillo, Paulina, Sawakuchi, Henrique O, Richey, Jeffrey E, & Barros, Nathan (Dec 2015). Estimating Greenhouse Gas Emissions from future Amazonian Hydroelectric Reservoirs. Environmental Research Letters, 10(12), 13.

Fearnside, Philip. 2015. Emissions from Tropical Hydropower and the IPCC. Environmental Science and Policy 50:225-229. doi: 10.1016/j.envsci.2015.03.002

Fedorov, M.P., Elistratov, V.V., Maslikov, V.I. et al. 2015. Reservoir Greenhouse Gas Emissions at Russian HPP. Power Technol Eng 49, 33–39.


Maeck, A., Hofmann, H., and Lorke, A. (2014).  Pumping Methane out of Aquatic Sediments – Ebullition Forcing Mechanisms in an Impounded River, Biogeosciences, 11, 2925–2938,


Hertwich EG.(2013)  Addressing Biogenic Greenhouse Gas Emissions from Hydropower in LCA. Environ Sci Technol. 2013 Sep 3;47(17):9604-11. doi: 10.1021/es401820p

Maeck, Andreas, Tonya DelSontro, Daniel F. McGinnis, Helmut Fischer, Sabine Flury, Mark Schmidt, Peer Fietzek, and Andreas Lorke, (2013) Sediment Trapping by Dams Creates Methane Emission Hot Spots, Environmental Science & Technology 2013 47 (15), 8130-8137
doi: 10.1021/es4003907


Steinhurst, William, et al. (2012). Hydropower Greenhouse Gas Emissions, Synapse Energy Econ.. 12.

Teodoru, Cristian  et al. (2012). The Net Carbon Footprint of a Newly Created Boreal Hydroelectric Reservoir, Global Biogeiochemical Cycles, May 2012, at 1. 

The net carbon footprint of a newly created boreal hydroelectric reservoir

West, W. E. et al. (2012). Effects of Algal and Terrestrial Carbon on Methane Production Rates and Methanogen Community Structure in a Temperate Lake Sediment.Freshwater Biology 57, 949-955.


Barros, N., Cole, J., Tranvik, L. et al. (2011). Carbon Emission from Hydroelectric Reservoirs Linked to Reservoir Age and Latitude. Nature Geosci 4, 593–596.


Gunkel, G. (2009), Hydropower – A Green Energy? Tropical Reservoirs and Greenhouse Gas Emissions. Clean Soil Air Water, 37: 726-734.


Walter, Katey, Laurence Smith, and Stuart Chapin. (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget.  Phil. Trans. R. Soc. A.3651657–1676.


Intergovernmental Panel on Climate Change (IPCC) (2006), Appendix 3 — CH4 Emissions from Flooded Land: Basis for Future Methodological Development, 


Fearnside, P. (2005)  Do Hydroelectric Dams Mitigate Global Warming? The Case of Brazil’s CuruÁ-una Dam. Mitig Adapt Strat Glob Change 10, 675–691..

Tremblay et al. (2005). Greenhouse Gas Emissions – Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments. Germany: Springer, 2005.


Rosenberg, David M., Patrick McCully and Catherine M. Pringle, (2000). Global-Scale Environmental Effects of Hydrological Alterations: Introduction, BioScience, Volume 50, Issue 9, September 2000, Pages 746–751,[0746:GSEEOH]2.0.CO;2

St. Louis, Vincent L., Carol A. Kelly, Éric Duchemin, John W. M. Rudd, David M. Rosenberg, (2000). Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate. BioScience, Volume 50, Issue 9, September, Pages 766–775,[0766:RSASOG]2.0.CO;2


Fearnside, P. (1997). Greenhouse-Gas Emissions from Amazonian Hydroelectric Reservoirs: The Example of Brazil’s Tucuruí Dam as Compared to Fossil Fuel Alternatives. Environmental Conservation, 24(1), 64-75. doi:10.1017/S0376892997000118


Fearnside, P. (1995). Hydroelectric Dams in the Brazilian Amazon as Sources of ‘Greenhouse’ Gases. Environmental Conservation, 22(1), 7-19. doi:10.1017/S0376892900034020




This Post Has 4 Comments

  1. Gary: This is a fantastic resource. Thank you for pulling it all together and for sharing it. I just wish that many of my environmentalist friends who should know better didn’t have such blinders on when it comes to this issue. They have bought into the fallacy that hydro-electric generation is the answer to climate change. Thanks for trying to set the record straight.

  2. Thank you indeed. Dam promoters forget about the values in the valleys that get flooded. Civilizations evolved in the fertile, productive valley bottoms and they fall when human activity destroys those valleys. Until recent years there has always been another valley to move to. We’ve almost run out of valleys.

Comments are closed.

Back To Top